Forum27 - Türkiye'nin En Büyük Forumu
 

Go Back   Forum27 - Türkiye'nin En Büyük Forumu > Eğitim - Öğretim > matematik - geometri

Cevapla

 

LinkBack Seçenekler Stil
  #1  
Alt 27 November 2008, 10:51
Senior Member
 
Kayıt Tarihi: 21 September 2008
Mesajlar: 15,180
Konular:
Aldığı Beğeni: 0 xx
Beğendiği Mesajlar: 0 xx
Post BeLirsiz integraL

I.3.2 Kısmi İntegrayon Yöntemi: U ve v ile, x’in bir [a,b] aralığında sürekli türevleri olan iki fonksiyonunu gösterelim. uv çarpımının diferensiyeli d(uv) = udv + vdu ‘ dır. Buradan udv=d(uv)-vdu yazılır. Bu bağlantının iki tarafının belirsiz integralleri birbirine eşittir: ∫udv = ∫d(uv) – vdu veya ∫udv = uv – ∫vdu ‘ dur. Kısmi integrasyon metodu bu formül ile verilmiştir ve yöntemin esası hesaplanması istenilen ∫ udv yerine hesaplanması daha kolay olabilen ∫ vdu belirsiz integralini kaymayı mümkün kılar. II. BELİRLİ İNTEGRAL II.1 Belirli İntegralin Tanımı: f(x) , x = a dan x = b’ye kadar olan aralıkta sürekli bir fonksiyon olsun. Bu aralığı , apsisleri a, ,….,xn - 1, b olan n parçaya bölelim. Aralıkların boyları, , …. , ∆xn olsun. Bu aralıkların her birinde x’in x’1, x’2 , x3’…., x’n gibi herhangi değerleri alalım f(x)’in x = a , x=b imitleri arasındaki belirli integrali diye: f(x) dx = ℓim f(x ∆x, + ℓ( ’) x2+… + f( 1) n→ 8 = ℓim ∑ f(xi1) xi n→ 8 =| ∫ f(x) dx| b = F(x) b = F(b) – F(a) Ya denir. Buradaki F(x) fonksiyonu türevi f(x) olan bir fonksiyondur. II.2.Belirli İntegrale Ait Başlıca Teoremler B f1(x) + f2(x) +….+ fn (x) dx= f1 (x) dx + b f2(x) dx +…+ b fn (x) dx k.f (x) dx = k. B f(x) dx f (x) dx = - a f(x) dx f(x) dx = c f(x) dx + b f(x) dx f(x) dx = (b-a)f(x1) f(x)dx = Lism f(x) dx III. İNTEGRALLERİN HESAPLAMA YÖNTEMLERİ III.1.TRİGONOMETRİK FONKSİYONLARIN İNTEGRALİ III.1,1.Dairesel Fonksiyonlar (Trigonometrik Foksiyonlar) cinsinden Rasyonel Olarak İfade Edilen Fonksiyonların integrali (Yarım Açı Metodu) P(x,y), Q(x,y), x ve y’bir polinom olmak üzere I.1 R (x,y), x veya y’li rasyonel fonksiyon ise R(sinx, cosx,),sinx ve cosx li rasyonel bir fonksiyondur. Trigonometriden sinx= , cosx= olduğu biliniyor. R rasyonel bir fonksiyon olmak üzere ∫R (sinx,cosx) dx integrali u = tan değişken dönüştürme ile R , u’nun rasyonel fonksiyonu Olmak üzere ∫R,(u )du şekline dönüşür. Gerçekten x = 2Arctonu dx = sinx = Tan COSX = eşitlikleri kullanılarak ∫R(sinx , cosx) dx integrali rasyonel kesirlerin integraline dönüşmüş olur. I.2. ∫sinax.coobxdx, ∫sinax.sinbxdx , ∫cosax coobx şeklinde integraller Bu integrali almak için Sinax . Sinbx = [cos(a-b)x- cos (a+b)x] sinax . cosbx = [ sin(a-b)x – sin (a+b)x] Sinax . cosbx = [cos (a-b)x- cos(a+b)x]


İcerigi:
I.3.2 Kısmi İntegrayon Yöntemi:
U ve v ile, x’in bir [a,b] aralığında sürekli türevleri olan iki fonksiyonunu gösterelim.
uv çarpımının diferensiyeli
d(uv) = udv + vdu ‘ dır. Buradan
udv=d(uv)-vdu
yazılır. Bu bağlantının iki tarafının belirsiz integralleri birbirine eşittir:
∫udv = ∫d(uv) – vdu veya
∫udv = uv – ∫vdu ‘ dur.
Kısmi integrasyon metodu bu formül ile verilmiştir ve yöntemin esası hesaplanması istenilen
∫ udv yerine hesaplanması daha kolay olabilen
∫ vdu belirsiz integralini kaymayı mümkün kılar.
II. BELİRLİ İNTEGRAL
II.1 Belirli İntegralin Tanımı: f(x) , x = a dan x = b’ye kadar olan aralıkta sürekli bir fonksiyon olsun. Bu aralığı , apsisleri a, ,….,xn - 1, b olan n parçaya bölelim. Aralıkların boyları,
, …. , ∆xn olsun. Bu aralıkların her birinde x’in x’1, x’2 , x3’…., x’n gibi herhangi
değerleri alalım f(x)’in x = a , x=b imitleri arasındaki belirli integrali diye:
f(x) dx = ℓim f(x ∆x, + ℓ( ’) x2+… + f( 1)
n→ 8


= ℓim ∑ f(xi1) xi
n→ 8
=| ∫ f(x) dx| b = F(x) b = F(b) – F(a)
Ya denir. Buradaki F(x) fonksiyonu türevi f(x) olan bir fonksiyondur.
II.2.Belirli İntegrale Ait Başlıca Teoremler
B f1(x) + f2(x) +….+ fn (x) dx= f1 (x) dx + b f2(x) dx +…+ b fn (x) dx
k.f (x) dx = k. B f(x) dx
f (x) dx = - a f(x) dx
f(x) dx = c f(x) dx + b f(x) dx
f(x) dx = (b-a)f(x1)
f(x)dx = Lism f(x) dx
III. İNTEGRALLERİN HESAPLAMA YÖNTEMLERİ
III.1.TRİGONOMETRİK FONKSİYONLARIN İNTEGRALİ
III.1,1.Dairesel Fonksiyonlar (Trigonometrik Foksiyonlar) cinsinden
Rasyonel Olarak İfade Edilen Fonksiyonların integrali
(Yarım Açı Metodu)
P(x,y), Q(x,y), x ve y’bir polinom olmak üzere

I.1 R (x,y), x veya y’li rasyonel fonksiyon ise R(sinx, cosx,),sinx ve cosx li rasyonel bir fonksiyondur.
Trigonometriden sinx= , cosx= olduğu biliniyor.
R rasyonel bir fonksiyon olmak üzere
∫R (sinx,cosx) dx integrali u = tan değişken dönüştürme ile R , u’nun rasyonel fonksiyonu
Olmak üzere ∫R,(u )du şekline dönüşür.
Gerçekten x = 2Arctonu
dx =

sinx =
Tan
COSX =
eşitlikleri kullanılarak ∫R(sinx , cosx) dx integrali rasyonel kesirlerin integraline dönüşmüş olur.
I.2. ∫sinax.coobxdx, ∫sinax.sinbxdx , ∫cosax coobx şeklinde integraller
Bu integrali almak için
Sinax . Sinbx = [cos(a-b)x- cos (a+b)x]
sinax . cosbx = [ sin(a-b)x – sin (a+b)x]
Sinax . cosbx = [cos (a-b)x- cos(a+b)x]
Alıntı ile Cevapla
Cevapla

Seçenekler
Stil



Saat: 19:47


Telif Hakları vBulletin® v3.8.9 Copyright ©2000 - 2019, ve
Jelsoft Enterprises Ltd.'e Aittir.
Tipobet forum Kameralı Sohbet Sevgi forumu Kadınca Forum Mutlu Forum forumcu forum kadinca forum dernek forum forum ankara forum aktuel webmaster forum istanbul escort istanbul escort Betvole tipobet365 best10

Search Engine Friendly URLs by vBSEO 3.6.0 PL2