Forum27 - Türkiye'nin En Büyük Forumu
 

Go Back   Forum27 - Türkiye'nin En Büyük Forumu > Eğitim - Öğretim > matematik - geometri

Cevapla

 

LinkBack Seçenekler Stil
  #1  
Alt 16 March 2009, 15:49
Yorgun Yürek - ait Kullanıcı Resmi (Avatar)
♥ GüLerken AğLadığını,MutLu OLanLar BiLmez
 
Kayıt Tarihi: 3 March 2009
Mesajlar: 35,077
Konular:
Aldığı Beğeni: 0 xx
Beğendiği Mesajlar: 0 xx
Standart Fonksiyonlar -Limit - Türev- İntegral

FONKSİYON

TANIM: A ve B gibi boş olmayan iki küme için, A nın her elemanını B’nin bir ve yalnız bir elemanı ile eşleyen A’dan B’ye bir f bağıntısına A ‘dan B’ye FONKSİYON denir.

Kısaca, A’dan B’ye bir bağıntının fonksiyon olması için,

a) x A için (x, y) f olacak biçimde y B olmalı.

b) A kümesinin bir elemanı B kümesinin birden fazla elemanı ile eşlenemez.

A kümesinin f fonksiyonunun TANIM KÜMESİ ve B kümesine f fonksiyonunun DEĞER KÜMESİ denir.

f fonksiyonu x A’yı y B’ye eşliyorsa y’ye x’in görüntüsü denir ve f: x y veya y = f (x) biçiminde gösterilir.

TERS FONKSİYON:
f: A B ye, f: x y = f (x) fonksiyonu birebir ve örten fonksiyon olsun. B A ya ve y x fonksiyonuna f in tersi denir ve f-1 şeklinde gösterilir.

f: A B f-1 : B A
f: x y = f (x) f-1 : y x = f-1(y)

ÖRNEKLER:
1. f: R R, f (x) = x + 5 ise f-1(x) nedir?
Çözüm:


2. R+ R ye f (x) = x2 + 2 fonksiyonunun tersini bulunuz (x > 0)
Çözüm:






BİLEŞKE FONKSİYON:
f: A B ve g: B C birer fonksiyon ise A’daki her elemanı f ve g fonksiyonları ile C’nin elemanlarına dönüştüren fonksiyon f ile g’nin bileşkesi denir.

ÖZELLİKLERİ:
1) fog gof
2) (fog)oh = fo(goh
3) fof-1 = f-1 of = I ( I birim fonksiyon)
4) foI = Iof = f
5) (f-1)-1 = f
6) (fog)-1 = g-1of-1
7) (fogoh)-1 = h-1 o g-1 o f-1
8) fog = h f = hog-1 ve g = f-1 o h

ÖRNEKLER:
1. R R’ye iki fonksiyon, f (x) = 2x – 1 ve g (x) = x + 1 ise (gof)( - 1) nedir?
Çözüm:
(gof)(- 1) = g(f(- 1)) = g(2.(- 1) – 1 )
= g(- 3) = - 3 + 1 = - 2
2. f ve g : R R’ye
f (x) = 3x + 2 ve g(x) = ise, (fog)(x) ve (gof)(x) fonksiyonlarını bulun.
Çözüm:

3. f ve g : R R’ye
f (x) = 2x + 1 ve (gof) (x) = 3x + 2 ise, g(x) nedir?
Çözüm:
(gof of-1)(x) = (3x + 2) of-1

g (x) = (3x + 2) of-1
f (x) = 2x + 1 f-1 (x) = dir.

4. f ve g : R R’ye f (x) = ve (fog)(x) = 6x + 1 ise g(x) = ?
Çözüm:
(f-1o fog)(x) = f-1 o (6x + 1)
g (x) = f-1 o(6x + 1)
f (x) =
g (x) = (3x + 1) o (6x + 1)
g (x) = 3. (6x + 1) + 1 = 18x + 4
5. f ve g : R R’ye
(gof-1) (x) = ve g-1 (x) = 3x – 1 ise f (x) nedir?
Çözüm:
(g-1ogof)(x) = g-1 o



LİMİT
BİR FONKSİYONUN LİMİTİ
TANIM
A R ve f: A – {xo} R ‘ye bir fonksiyon F(x) olsun. x değişkeni xo R sayısına yaklaştığında f(x) fonksiyonu da t R’ye yaklaşıyorsa t gerçel sayısına x, xo’a yaklaşırken f(x) fonksiyonunun limiti denir ve lim f(x) = t
x xo
şeklinde gösterilir.

SAĞDAN VE SOLDAN LİMİT:
SAĞDAN LİMİT:
y = f(x) fonksiyonunda x, xo R değerine sağ taraftan yaklaşırken f de bir t1 R değerine yaklaşıyorsa t1’e fonksiyonun sağdan limiti denir ve lim f(x) = t1 biçiminde
x x+o
gösterilir.

SOLDAN LİMİT:
y = f(x) fonksiyonunda x, xo R değerine sol taraftan yaklaşırken f de bir t2 R değerine yaklaşıyorsa t2 ye fonksiyonun soldan limiti denir ve lim f(x) = t2
x x-o

ÖRNEK:
x2 + 1, x 0 ise,
x + 1 , x < 0 ise,

fonksiyonun x = 0 noktasında limiti nedir?

ÇÖZÜM:
lim f(x) = lim (x2 + 2) = 02 + 1 = 1
x 0+ x 0+

lim f(x) = lim (x + 1) = 0 + 1 = 1
x 0- x 0-

O halde lim f(x) = 1 dir.
x 0


LİMİT TEOREMLERİ:

1) lim (f(x) g(x)) = lim f(x) lim g(x)
x x0 x x0 x x0

2) lim (f(x).g(x)) = lim f(x).lim g(x)
x x0 x x0 x x0

3) lim c = c (c R)
x x0

4) lim (c.f(x)) = c . lim f(x)
x x0 x x0

5) g(x) 0 ve lim g(x) 0 ise
x x0



6) n N+ olmak üzere


7) n tek doğal sayı ise,



8) n çift doğal sayı ve f(x) 0 ise


BELİRSİZLİKLER VE LİMİTLERİ

A) BELİRSİZLİĞİNİN LİMİTİ:

ÖRNEK:

ifadesinin değeri nedir?


ÇÖZÜM:



B) BELİRSİZLİĞİN LİMİTİ:

ÖRNEK:

limitinin değeri nedir?

ÇÖZÜM:



Payın derecesi paydadan büyük olduğundan




ÇÖZÜMLÜ TEST

1. değeri aşağıdakilerden hangisidir?

A) –2 B) –1 C) 0 D) 1 E) 2

Çözüm 1.:

dır. O halde,




Cevap: B


2. limitinin değeri nedir?

A) B) C) D) E)

Çözüm 2.:


Cevap: C



TÜREV VE UYGULAMALARI

TANIM: y = f(x) fonksiyonu [a, b] kapalı aralığında tanımlı ve sürekli, x0 (a,b) olsun.

limiti bir gerçel sayı ise,

bu limite y = f(x) fonksiyonunun x = x0 noktasındaki TÜREVi denir ve f’(x0) şeklinde gösterilir.



ÖRNEK:

f : R R, f(x) = -x2 + 2 fonksiyonunun x0 = 1 noktasındaki türevi nedir?

ÇÖZÜM:

f(1) = - 12 + 2 = 1
f’(1)



NOT:




ÖRNEK:

f(x) = |x2 – 4| fonksiyonu verilir.

a) f’(2) = ? b) f’(1) = ?

ÇÖZÜM:

a) f (2) =|22 – 4| = 0 olduğu için fonksiyonun x = 2 noktasında türevi yoktur.

b)

TÜREV ALMA KURALLARI:

1) c R olmak üzere
f (x) = c f’(x) = 0
2) f (x) = x f’(x) = 1
3) f (x) = cx f’(x) = c
4) f (x) = c . xn f’(x) = c . n . xn-1
5) f (x) = c . un f’(x) = c . n . un-1 . u’x
6) f (x) = u v f’(x) = u’x v’x
7) f (x) = u . v f’(x) = u’x . v + v’x . u
8) f (x) = u . v . t f’(x) = u’x . v. t + v’x . u . t
+ t’x . u . v
9) f (x) =
10) f (x) =

ÖRNEKLER:
1. f (x) = 5 f’(x) = 0
2. f (x) = f’(x) = 0
3. f (x) = x5 f’(x) = 5x4
4. f (x) = x f’(x) = 1
5. f (x) = 2x f’(x) = 2
6. f (x) =

7. f (x) = x4 – x3 + 2x – 3 fonksiyonunun türevi nedir?
ÇÖZÜM:
f’(x) = 4x3 – 3x2 + 2

8. f (x) = (3x2 + 5)11 fonksiyonunun türevi nedir?
ÇÖZÜM:
f’(x) = 11 (3x2 + 5)10 . (3x2 + 5)’
= 11(3x2 + 5)10 . 6x
= 66x (3x2 + 5)10

9. f (x) = fonksiyonunun türevi nedir?
ÇÖZÜM:

olur.

TRİGONOMETRİK FONKSİYONLARIN TÜREVİ:
A)
1) f (x) = Sinx f’(x)=Cosx
2) f (x) = Cosx f’(x) = - Sinx
3) f (x) = tanx f’(x) = 1 + tan2x

4) f (x) = Cotx f’(x) = - (1 + Cot2x)


ÖRNEKLER:
1. f (x) = Secx f’(x) = ?
ÇÖZÜM:


2. f (x) = Cosec f’(x) =?
ÇÖZÜM:


B.
1) f (x) = Sin[u[x]] f’(x) = u’(x) . Cos[u(x)]
2) f (x) = Cos [u(x)] f’(x) = - u’(x) . Sin [u(x)]
3) f (x) = tan [u(x)] f’(x) = u’(x) [1 + tan2u(x)]

4. f (x) = Cot[u(x)] f’(x) = -u’(x) [1 + Cot2u(x)]

ÖRNEKLER:
1. f (x) = Sin3x f’(x) = 3Cos3x
2. f (x) = tan(x2 – 1) f’(x) = ?
ÇÖZÜM:
f’(x) = (x2 –1)’ . [1 + tan2(x2 – 1)]
f’(x) = 2x [1 + tan2 (x2 – 1)]
3. f (x) = Sin (tan x) fonksiyonunun türevi nedir?
ÇÖZÜM:
f’(x) = Cos (tanx) . (tanx)

4. f (x) = 2Sin3 x + 3Cos2x f’(x) = ?
ÇÖZÜM:
f’(x) = 2.3.Sin2x . (Sin x)’ + 3.2 Cosx . (Cosx)’
f’(x) = 6Sin2x . Cosx + 6 Cosx . ( - Sin x)

İNTEGRAL
TANIM:
f: [a,b] R ve F:[a, b] R ye tanımlı iki fonksiyon olsun, [a,b] için, F’(x) = f(x) yazılabilirse F(x)’e f(x)’in ilkel fonksiyonu yada integrali denir.
F’(x) dx = F(x) veya
f(x) dx = F(x) şeklinde gösterilir.

ÖRNEK:
f (x) = 2x2 f’(x) = 4x 4xdx = 2x2
f (x) = 2x2 – 1 f’(x) = 4x 4xdx = 2x2 – 1
f (x) = 2x2 + 3 f’(x) = 4x 4xdx =2x2 + 3

BELİRSİZ İNTEGRAL ÖZELLİKLERİ:
A. f’(x) dx = f(x) + C
B. d[f (x)] = f (x) + C
C. f (x)dx = f (x) dx ( R)
D. [f (x) g(x)] dx= f(x) dx g (x)dx
E. [ f (x) dx] = f (x)
F. d[ f (x)dx] = f(x) dx

ÖRNEKLER:
1. 2x dx = x2 + C
2. d(3x2) = 3x2 + C
3. 5x4dx = 5 x4dx
4. (x3 + x)dx = x3 dx + x dx
5. [ 2x dx] = 2x
6. d (x3dx) = x3dx



ÖRNEKLER:
1.
2. 12dx = 12x + C
3.
4. (x3 + x2 – 2)2 (3x2 + 2x)dx = ?
ÇÖZÜM 4:
x3 + x2 – 2 = u (3x2 + 2x) dx = du


TRİGONOMETRİK İNTEGRAL:
A. Cos x dx = Sin x + C
B. Sin x dx = - Cosx + C
C. Sec2x dx = (1 + tan2x) dx

D. Cosec2x dx = (1 + Cot2x) dx =
=

ÖRNEKLER:
1. Cos2x . Sin x dx =
ÇÖZÜM:
Cosx = u -Sin x dx = du
Sin x dx = - du
u2 . (-du) = - u2 . du



2. Sin 3x dx = ?
ÇÖZÜM:

3. Cos (2x + 1) dx = ?
ÇÖZÜM:


LOGARİTMİK VE ÜSTEL İNTEGRAL:
A.
B.
C. eu du = eu + C
D.

ÖRNEKLER:
1.
2. tan x dx = ?
ÇÖZÜM:

Cos x = u - Sin x dx = du
Sin x dx = - du

= - ln |u| + C = - ln |Cos x| + C
3. ex dx = ex + C
Alıntı ile Cevapla
Cevapla

Seçenekler
Stil



Saat: 19:11


Telif Hakları vBulletin® v3.8.9 Copyright ©2000 - 2019, ve
Jelsoft Enterprises Ltd.'e Aittir.
Tipobet forum Kameralı Sohbet Sevgi forumu Kadınca Forum Mutlu Forum forumcu forum kadinca forum dernek forum forum ankara forum aktuel webmaster forum istanbul escort istanbul escort Betvole tipobet365 best10

Search Engine Friendly URLs by vBSEO 3.6.0 PL2